Home About Us Industry Report Store Resources Contact us
Artificial Intelligence (AI) in Healthcare Market Size, Share Forecast Report 2024 – 2032

Artificial Intelligence (AI) in Healthcare Market Size, Assessment, Value, Share, Growth, Trends, Competition, Industry Analysis, Actionable Insights Report; By Component, By Technology, By Application, By End-User, By Region and By Country; Outlook and Forecast, 2024 – 2030

Report ID: VMRC1289

|

Published Date: Oct, 2024

|

No Of Pages: 240

|

Format : Artificial Intelligence (AI) in Healthcare Market Size, Share Forecast Report 2024 – 2032 Report Available in PDF, Excel, PPT and Excel

|

Base Year: 2023

Share:

Report Summary

The Global Artificial Intelligence (AI) in Healthcare Market witnessed remarkable growth, reaching a valuation of USD 21 Billion in 2023, and is projected to expand at a CAGR of 35% from 2024 to 2030. By 2030, the global AI in Healthcare market is estimated to reach USD 180 Billion. This exponential growth is attributed to several factors, including the proliferation of patient health-related digital information, increasing demand for personalized medicine, and the imperative to reduce healthcare costs. The rising global geriatric population, changing lifestyles, and the prevalence of chronic diseases further fuel the demand for early disease diagnosis and improved disease understanding.

Artificial Intelligence (AI) and machine learning (ML) algorithms play a pivotal role in revolutionizing healthcare systems, enabling accurate prediction of diseases based on historical health datasets. Deep learning technologies, predictive analytics, content analytics, and natural language processing (NLP) tools empower healthcare professionals to diagnose underlying health conditions at an earlier stage, facilitating proactive and personalized healthcare delivery.

The COVID-19 pandemic further accelerated AI adoption, showcasing its significance in rapid diagnosis, contact tracing, and vaccine development. Emerging trends include advanced AI technologies like deep learning and collaborative ecosystems driving innovation through partnerships, while regulatory frameworks and investments fuel market growth, ensuring patient safety and promoting innovation in AI-powered healthcare solutions.

What is AI in Healthcare?

AI in healthcare comprises a wide array of technologies, including machine learning, natural language processing (NLP), deep learning, computer vision, and others. These advanced technologies are reshaping the healthcare sector, empowering professionals and enhancing patient outcomes through data-driven solutions.

Machine learning algorithms, a subset of AI, analyze extensive datasets such as electronic health records (EHRs), medical imaging, genomic data, and patient-generated information from wearable devices. They identify patterns and trends, enabling healthcare providers to make well-informed decisions. Natural language processing (NLP) aids in understanding and generating human language, allowing AI systems to extract valuable insights from unstructured clinical notes, research papers, and patient records. Deep learning, a subset of machine learning, mimics the neural networks of the human brain to analyze complex datasets. In healthcare, deep learning algorithms excel in medical imaging analysis, facilitating early disease detection and diagnosis. Computer vision enables computers to understand and comprehend visual information. It is used in healthcare for applications such as medical image analysis, robotic surgery, and drug discovery among others.

AI plays a crucial role in medication management, therapeutic strategies, and drug development within the healthcare sector. It assists in diagnostic procedures, personalized medication, drug development, and remote patient monitoring. AI in healthcare employs sophisticated algorithms and software to analyze, understand, and interpret complex medical and healthcare data, mimicking human perception.

Beyond improving clinical workflows, AI powered virtual health assistants offer patients real-time access to medical information, appointment scheduling, and medication reminders.

AI in Medical Diagnosis: AI aids in improving the diagnostic process, reducing treatment costs, and enhancing health outcomes. For instance, AI algorithms can predict and diagnose diseases faster and more accurately than traditional methods, leading to improved patient care. Examples include the use of deep learning AI technology to improve breast cancer risk prediction and AI recognizing skin cancer better than experienced doctors.

AI in Drug Discovery: AI accelerates drug development processes by designing drugs, predicting side effects, and identifying ideal candidates for clinical trials. Additionally, AI enhances drug safety by streamlining pharmacovigilance processes, making medicines safer for global populations. It helps improve drug safety and predict toxicity, bioactivity, and other characteristics of molecules.

AI in Patient Experience: AI supports digital communications, offering tailored health tips, reminders, and personalized care. Natural language processing (NLP), predictive analytics, and speech recognition technologies improve communication between patients and healthcare providers, leading to more effective interactions and shared decision-making.

AI in Healthcare Data Management: AI breaks down data silos, connects information efficiently, and reduces administrative burdens. It helps gather and analyze vast amounts of patient data, contributing to more informed decision-making and efficient healthcare operations.

AI in Robotic Surgery: AI-enabled robots assist surgeons in performing minimally invasive procedures, leading to fewer complications, less pain, and quicker recovery times. AI in robotic surgery enhances surgical precision and improves patient outcomes. 

AI in Healthcare Administrative Workflow: AI streamlines and automates the administrative tasks, freeing up healthcare providers’ time for patient care. Generative AI aids in note-taking, content summarization, and accurate coding, and information sharing between departments, enhancing medical records' thoroughness and accuracy.

AI in Virtual Nursing Assistants: AI-powered virtual nurse assistants provide around-the-clock support to patients, assisting with medication queries, report forwarding to doctors, and appointment scheduling. These assistants alleviate the workload of clinical staff, allowing more time for direct patient care. They optimize workflow efficiency and improve patient satisfaction.

AI in Dosage Error Reduction: AI helps identify medication administration errors, improving patient adherence and treatment outcomes. AI-powered tools can flag errors in medication administration, reducing the risk of dosage errors.

AI in Fraud Prevention: AI detects fraudulent activities in healthcare, such as billing for unnecessary services or procedures. By recognizing unusual patterns in insurance claims, AI contributes to reducing healthcare fraud and associated costs and improving overall healthcare efficiency.

What are the Major Growth Drivers, Restraints, and Opportunities in the AI in Healthcare Market?

Surge of Patient Health Data Driving AI Adoption in Healthcare

The increasing digitalization of healthcare records, coupled with the widespread adoption of health-related wearable devices and sensors, has resulted in an unprecedented surge in the availability of patient health data. This influx of data serves as a catalyst for the widespread adoption of artificial intelligence (AI) in the healthcare sector. AI technologies boast the capability to efficiently analyze this vast trove of data, extracting invaluable insights that have the potential to revolutionize patient care. By harnessing AI-driven analytics, healthcare professionals can achieve more accurate diagnoses, devise personalized treatment plans tailored to individual patient needs, and ultimately enhance overall patient outcomes.

Within the healthcare industry, there has been an exponential growth in the generation of diverse datasets, encompassing electronic health records (EHRs), medical imaging files, genomic data, and more. These datasets serve as the foundation upon which AI algorithms operate, allowing for the identification of intricate patterns, enhancement of diagnostic accuracy, and the formulation of highly personalized treatment strategies. By leveraging AI capabilities, healthcare providers can unlock the full potential of these datasets, transforming raw data into actionable insights that drive tangible improvements in patient care.

The integration of AI-driven technologies into healthcare systems marks a significant paradigm shift, offering unprecedented opportunities to optimize clinical workflows and enhance decision-making processes. As AI continues to evolve and mature, its role in healthcare is poised to expand, empowering healthcare professionals with the tools and insights needed to deliver more efficient, effective, and personalized care to patients worldwide. Embracing AI-driven innovation represents a pivotal step towards realizing the full potential of data-driven healthcare and achieving the ultimate goal of improving patient outcomes and quality of life.

Rising Demand for Improved Efficiency and Cost Reduction Accelerating AI Implementation in Healthcare

The global healthcare industry faces mounting pressure to enhance efficiency and reduce costs without compromising patient care standards. In response to this challenge, healthcare providers and organizations are turning to Artificial Intelligence (AI) as a solution. AI holds promise in delivering cost-saving opportunities by streamlining administrative processes, optimizing resource allocation, minimizing medical errors, and facilitating early disease detection and prevention.

Healthcare expenditure is a significant concern for both governments and individuals worldwide. AI presents a viable strategy to address this issue by driving efficiency improvements across various healthcare operations. By automating routine tasks and workflows, AI streamlines administrative processes, thereby reducing overhead costs associated with manual labor and paperwork. Additionally, AI-powered tools and algorithms enhance the accuracy and efficiency of medical decision-making, leading to improved patient outcomes and reduced healthcare expenses over time.

For example, AI-driven chatbots are revolutionizing patient interaction by providing timely and accurate responses to inquiries, appointment scheduling, and medication reminders. This automation of patient engagement tasks not only improves the overall patient experience but also enables healthcare staff to focus on more complex and critical aspects of care delivery.

Furthermore, AI applications in healthcare extend beyond administrative functions to encompass clinical areas such as diagnosis and treatment. AI algorithms analyze vast datasets to identify patterns indicative of diseases, enabling early detection and intervention. By diagnosing conditions at an early stage, healthcare providers can implement timely and cost-effective treatment strategies, thereby reducing long-term healthcare expenditures associated with advanced disease management.

Surging Demand for Personalized Medicine Expands AI in Healthcare Market

The increasing demand for personalized medicine is catalyzing the growth of the AI in healthcare market. Personalized medicine, characterized by tailoring medical treatment to the individual characteristics of each patient, is gaining prominence within the healthcare industry. This approach acknowledges the unique genetic makeup, medical history, lifestyle factors, and treatment responses of each patient, paving the way for more targeted and effective interventions.

AI algorithms play a pivotal role in enabling personalized medicine by analyzing comprehensive patient data. By scrutinizing genetic information, medical histories, lifestyle habits, and responses to previous treatments, AI algorithms can derive actionable insights to formulate personalized treatment plans. These plans are customized to address the specific needs and characteristics of individual patients, thereby maximizing treatment efficacy and patient outcomes.

The rising demand for personalized healthcare solutions is a key driver behind the increasing adoption of AI technologies in the healthcare sector. Healthcare providers and organizations recognize the potential of AI to revolutionize patient care by delivering tailored interventions that yield superior outcomes. As a result, investments in AI technologies continue to escalate as stakeholders seek to capitalize on the benefits of personalized medicine.

Shortage of Healthcare Professionals Spurs AI in Healthcare Industry

The global healthcare industry is facing a significant shortage of healthcare professionals, presenting challenges in delivering timely and quality care to patients. In response to this shortage, Artificial Intelligence (AI) is emerging as a vital solution, offering automation and support to clinicians across various healthcare settings.

AI technologies play a crucial role in alleviating the burden on healthcare professionals by automating routine tasks and providing valuable assistance in clinical decision-making. For instance, AI systems are adept at analyzing medical images such as X-rays, MRIs, and CT scans, enabling them to flag potential abnormalities and anomalies. By automating the initial analysis of medical images, AI allows radiologists and other clinicians to prioritize and focus their attention on interpreting the most critical cases promptly.

Moreover, AI-powered tools and applications enhance the efficiency and accuracy of healthcare workflows. These technologies can streamline administrative tasks, optimize resource allocation, and facilitate better patient management. By reducing the administrative burden on healthcare professionals, AI enables them to dedicate more time and attention to direct patient care, ultimately improving patient outcomes.

The integration of AI in healthcare not only addresses the shortage of healthcare professionals but also enhances the overall quality and accessibility of healthcare services. AI-driven solutions empower healthcare providers to deliver faster diagnoses, more personalized treatments, and improved patient experiences.

Implementing or deploying an artificial intelligence system within a healthcare organization can incur significant costs, often deterring many providers from adoption. Additionally, the absence of standardized AI models poses a notable challenge to the market. Developing and implementing AI applications in healthcare necessitates approval from regulatory bodies such as the FDA or the European Union. This approval process is both time-consuming and costly, potentially impeding AI adoption and dissuading smaller companies with limited resources from entering the market. Furthermore, stringent regulations addressing data privacy and security concerns are crucial, yet their fluctuating nature may further inhibit the development of AI systems tailored for the healthcare industry.

Artificial Intelligence AI in Healthcare Market Report Scope & Snapshot

Report Attributes

Details

AI in Healthcare Market Forecast Years

2024 to 2030

AI in Healthcare Market Historical Years

2019, 2020, 2021, 2022, 2023

AI in Healthcare Market 2023

USD 21 Billion

AI in Healthcare Market CAGR

35% (2024 to 2030)

AI in Healthcare Market 2030

USD 35 Billion

Key Segments

Component, Technology, Application, End-User, and Region

Key Regions & Countries

North America (The U.S. Canada, Mexico), Europe (Germany, The U.K, France, Spain, Russia, Poland, Benelux, Nordic Countries, Rest of Europe Countries), Asia Pacific (China, Japan, India, South Korea, ASEAN, Australia, Rest of APAC Countries), Middle East & Africa (GCC – UAE, Saudi Arabia, Qatar, Oman, Bahrain, Kuwait), Israel, South Africa, Egypt, Rest of MEA Countries), and South America (Brazil, Argentina, Colombia, Chile, Rest of South America Countries). 

Some of the Key Players/Brands

Amazon Web Services Inc., Atomwise, Babylon Health, Biobeat, CloudMedx, COTA, Enlitic, FDNA INC., GE HealthCare Technologies Inc., General Vision Inc., Ginger, Google Inc., IBM, Intel Corporation, IQVIA, Itrex Group, Johnson & Johnson Services Inc., Koninklijke Philips N.V., Lunit Inc., MDLIVE, Medidata, Medtronic, Merative, Merck, Micron Technology, Microsoft, NVIDIA Corporation, Oncora Medical, Oracle, Qure.ai, Qventus, Recursion, Siemens Healthineers AG, Sirona Medical Inc., Stryker, Sweetch, Tempus, Virgin Pulse, and Others.

 

AI In Healthcare Market Trends and Opportunities

Technological Advancements and Convergence of AI with Other Technologies

The convergence of technological advancements, particularly the integration of AI with other cutting-edge technologies, presents a multitude of opportunities for market growth. Cloud computing, when combined with AI systems in healthcare, provides scalable and cost-effective storage and processing capabilities for handling vast datasets securely. This integration empowers healthcare organizations to store and analyze extensive data resources efficiently.

Moreover, the proliferation of IoT devices represents another significant advancement in AI solutions. Wearable health trackers and monitors, integrated with artificial intelligence, enable continuous data collection and analysis. AI algorithms can interpret this data in real-time, detecting anomalies, predicting potential health issues, and ultimately enhancing patient outcomes.

Looking ahead, the integration of AI with other emerging technologies holds tremendous promise. Collaboration with the Internet of Medical Things (IoMT) could enable the collection and analysis of real-time patient data for continuous monitoring and personalized care. Additionally, coupling AI with genomics has the potential to revolutionize personalized medicine and drug discovery processes. Furthermore, combining AI with robotics offers the prospect of more precise and minimally invasive surgical procedures.

AI-powered Remote Patient Monitoring and Telehealth

AI-based remote patient monitoring and telehealth are revolutionizing healthcare by enabling continuous monitoring outside traditional settings. This trend, supported by advancements in AI, addresses the increasing demand for remote services. Integrating AI into wearables and sensors allows real-time data collection for early issue detection. For instance, AI-equipped wearables can detect irregular heartbeats or glucose fluctuations, alerting providers promptly. AI-powered chatbots engage patients remotely, providing support and personalized advice. Patients can inquire about medications, schedule appointments, or receive health education. These innovations enhance accessibility and efficiency in healthcare delivery, thereby bolstering growth opportunities in the AI in healthcare market.

What are the AI in Healthcare Market Segmentations and Bifurcations? 

AI In Healthcare Market Segmentation based on Component

  • Hardware
    • Memory

    • Network

    • Processor

  • Software Solutions

    • AI Platform

    • AI Solutions

  • Services

    • Deployment & Integration

    • Support & Maintenance

    • Others

In 2023, the AI in healthcare market was dominated by the software solutions segment, which captured a commanding revenue share of around 40%. This dominance stemmed from the escalating adoption of AI-powered software solutions among various stakeholders, including healthcare providers, payers, and patients.

A pivotal shift within the healthcare AI landscape is the integration of non-procedural languages, such as SQL, signaling a departure from the conventional dominance of procedural languages like Python and Java. These intuitive, declarative languages prioritize outcomes over step-by-step instructions, democratizing AI development and enabling direct contributions from healthcare professionals. This shift promises substantial segmental growth in areas such as clinical decision support systems, medical imaging analysis, personalized medicine, and public health, ultimately enhancing patient care and outcomes.

During the forecast period from 2024 to 2030, the software solutions segment is poised for lucrative growth, driven by the increasing penetration of AI-based technologies across diverse healthcare applications. Specifically, the software solution component segment is projected to exhibit the fastest CAGR of over 37% during this period. These applications encompass cybersecurity, clinical trials, virtual assistants, robot-assisted surgeries, telemedicine, dosage error reduction, and fraud detection. Notably, strategic initiatives such as partnerships and seed investments by industry leaders such as IBM Corporation, NVIDIA Corporation, Intel Corporation, and BioSymetrics are expected to further propel segmental growth.

An illustrative example of this momentum is the collaborative effort between GE Healthcare and five prominent Chinese software developers. This partnership aimed to develop the Edison AI platform, symbolizing a concerted push towards digital transformation within GE Healthcare. Such collaborations underscore the industry's commitment to harnessing AI for improved healthcare outcomes.

Furthermore, the services component segment is also anticipated to witness substantial growth, fueled by the increasing penetration of AI technologies in applications such as clinical trials, virtual assistants, robot-assisted surgeries, dosage error reduction, and fraud detection.

AI In Healthcare Market Segmentation based on Technology

  • Computer Vision

  • Context Aware Computing
  • Machine Learning

    • Deep Learning

    • Supervised

    • Unsupervised

    • Others

  • Natural Language Processing

    • Smart Assistance

    • OCR (Optical Character Recognition)

    • Auto Coding

    • Text Analytics

    • Speech Analytics

    • Classification and Categorization

  • Others

In 2023, Machine Learning (ML) technology emerged as the leading segment, securing the largest share of the AI in healthcare market. With the healthcare industry grappling with vast datasets, including Electronic Health Records (EHRs), medical imaging, genomic data, and wearable device data, ML emerged as a critical tool. ML's strength lies in its capacity to navigate through these extensive and varied datasets, extracting valuable insights to empower healthcare providers in making data-driven decisions and improving patient outcomes. ML technology is deeply ingrained in healthcare solutions, aiding in disease diagnosis, prognosis, and treatment planning by leveraging patient data patterns and correlations to identify early disease indicators, forecast patient outcomes, and propose personalized treatment strategies.

Within the ML technology domain, Deep Learning (DL) is poised to dominate the AI in Healthcare market in the forecast period. DL's transformative impact in healthcare stems from its ability to create hierarchical representations through Artificial Neural Networks (ANNs), mirroring the human brain's structure. These interconnected layers of neurons learn from extensive datasets to extract intricate features and patterns. DL excels in medical imaging tasks such as image classification, disease detection in X-rays and MRIs, and precise object segmentation for analysis. DL's Natural Language Processing (NLP) capabilities aid in extracting valuable information from clinical notes and research papers, facilitating diagnosis and aiding in drug discovery. Moreover, DL predicts molecular interactions in drug development and precision medicine, identifies drug targets, and customizes treatments based on individual genetic profiles. Applications such as clinical decision support, personalized healthcare plans, and predictive analytics underscore DL's transformative potential in healthcare.

The Natural Language Processing (NLP) technology segment is expected to experience significant growth from 2024 to 2030 due to its ability to automate and optimize clinical documentation processes. NLP streamlines documentation workflows by seamlessly extracting and coding relevant information from clinical narratives, reducing administrative burdens, and ensuring accuracy in billing and reimbursement processes. By automating tasks such as medical transcription, coding, and charting, NLP enhances operational efficiency and facilitates streamlined healthcare delivery.

Recent advancements in ML, DL, and NLP technologies underscore their importance in the healthcare landscape. DL algorithm advancements have improved disease detection accuracy in medical imaging, while innovative NLP applications have transformed clinical documentation processes, reducing manual labor and enhancing accuracy.

AI In Healthcare Market Segmentation based on Application

  • Administrative Workflow Assistants

  • Clinical Trials

  • Connected Machines & Medical Devices

  • Cybersecurity

  • Diagnosis

  • Dosage Error Reduction

  • Fraud Detection

  • Medical Imaging & Diagnostics
  • Precision Medicine
  • Robot-Assisted Surgery

  • Virtual Assistants

  • Wearables
  • Others

In 2023, clinical trials, medical imaging & diagnostics, and robot-assisted surgery emerged as the leading application segments in the global AI in healthcare market. The development of new drugs entails a complex and resource-intensive process, with clinical trials serving as a pivotal stage in assessing medication efficacy and safety. AI technology boosts clinical trial procedures by harnessing its capacity to swiftly and efficiently analyze extensive datasets. Machine learning algorithms can sift through patient data, medical records, and genetic information to refine trial design, identify suitable participants, and forecast outcomes. This optimization of processes not only expedites drug development timelines but also significantly curtails costs associated with conventional trial methodologies. Furthermore, AI-driven predictive modeling aids in refining trial protocols, leading to more streamlined and cost-effective trials. By scrutinizing historical data and simulating diverse scenarios, researchers can formulate trials that yield more dependable results in a condensed timeframe.

Conventionally, the analysis of medical scans such as X-rays, MRIs, and CT scans has been labor-intensive and prone to human error. However, AI algorithms excel in analyzing medical images with unmatched precision, detecting subtle abnormalities and patterns that may evade human observation. Through the utilization of deep learning and computer vision techniques, AI can pinpoint lesions, categorize diseases, and localize abnormalities, facilitating earlier diagnoses and more efficient treatment plans. Additionally, AI-driven automation of tasks such as image segmentation and reporting, alleviates the burden on radiologists, enabling them to dedicate more time to intricate cases and provide superior patient care.

The escalation in the number of robot-assisted surgeries and increased investment in the development of new AI platforms are key catalysts driving AI penetration in this segment. Studies indicate that by 2023, over 10 million robotic surgeries have been performed across various disciplines, including general surgery, urology, gynecology, and cardiothoracic surgery. This surge in robotic surgeries is further supported by research published in JAMA Network Open, revealing that robot-assisted surgeries accounted for over 15% of overall general surgeries in 2020, a substantial increase from 1.8% in 2012. The growing demand for robotic surgeries underscores the need for trained professionals in this domain and highlights the anticipated rise in AI adoption due to the shortage of skilled surgeons. Recent developments further exemplify the momentum in this segment. For instance, Intuitive Surgical, a leading surgical robotics provider, reported robust Q4 2023 results, with revenue soaring by 17% year-on-year to USD 1.93 billion. This growth was driven by an increase in da Vinci procedure volume and an expansion of the installed base of systems, signaling a significant uptick in the adoption of robotic surgical systems.

The virtual assistant segment emerges as the most promising during the forecast period. The integration of AI into virtual assistants gains momentum due to the shortage of skilled professionals, enhanced internet accessibility, and increased penetration of smart devices. Rising investments in automated technologies within the healthcare sector are poised to fuel the growth of the virtual assistant segment, catering to the evolving needs of both healthcare providers and patients.

AI In Healthcare Market Segmentation based on End User

  • Healthcare Providers

  • Healthcare Payers

  • Healthcare Companies

  • Patients

  • Others

In 2023, the healthcare companies emerged as the leading end-user segment in the AI in healthcare market, capturing the largest revenue share. The widespread adoption of AI technologies in drug development has sparked a revolution in the pharmaceutical landscape. By leveraging genomic information, medical records, and clinical trial data, AI enables the identification of personalized treatment options tailored to specific patient groups. Moreover, AI-driven analytics and predictive modeling enhance the design, execution, and analysis of clinical trials, resulting in more efficient and cost-effective trials. Recent study revealed that approximately 80% of professionals in the pharmaceutical and life sciences sectors utilize AI in drug discovery. Additionally, research suggests that AI technology reduces the time required by pharmaceutical companies to discover new drugs from 5-6 years to just one year, according to another study.

The healthcare providers segment, which includes outpatient facilities, hospitals, and others, is expected to witness substantial growth during the forecast period. AI-powered medical imaging analysis tools are revolutionizing diagnostic processes, aiding healthcare providers in interpreting medical images such as X-rays, MRIs, and CT scans. These tools improve diagnostic accuracy, shorten interpretation time, and facilitate early disease detection, leading to prompt interventions and enhanced patient care. Furthermore, hospitals utilize AI-driven predictive analytics to forecast patient admission rates, identify vulnerable populations, and allocate resources efficiently, thereby stimulating segment expansion.

The patients segment is anticipated to experience the fastest CAGR in the AI in Healthcare market during the forecast period. Integrating artificial intelligence (AI) with smartphones and wearables transforms the healthcare landscape, empowering individuals to actively participate in their well-being. This powerful combination democratizes health data, enabling patients to track vital signs, sleep patterns, activity levels, and moods, fostering a proactive approach to health management. AI algorithms analyze the wealth of personal health data generated, facilitating the identification of patterns, prediction of health risks, and personalization of treatment plans. This data-driven approach reshapes healthcare, providing individuals with a deeper understanding of their health and promoting proactive interventions.

What are the Regional and Country Trends in the AI in Healthcare Market?

AI in Healthcare Market: Regional Trends and Outlook 

  • North America

  • Europe

  • Asia Pacific

  • South America

  • Middle East & Africa

In 2023, North America emerged as the leading region in the global AI in healthcare landscape, commanding over 50% of the market share. This dominance is credited to several factors, including advancements in healthcare IT infrastructure, increased healthcare expenditures, and widespread adoption of artificial intelligence and machine learning technologies. The region benefits from favorable government initiatives and lucrative funding options, fostering a conducive environment for market growth. Additionally, North America boasts a robust presence of key players driving innovation in AI healthcare solutions.

Moreover, the region's substantial patient pool, with over half of the US population grappling with one or more chronic diseases, propels the demand for AI in healthcare. Government regulations mandating the digital storage and management of health data significantly contribute to this demand, accelerating the adoption of AI-based technologies across the healthcare sector.

The AI in healthcare market in Europe is positioned for notable expansion, driven by the widespread adoption of AI technologies and increasing investments from both government and private organizations. For instance, in 2021, the Department of Health and Social Care in Europe allocated over USD 49 million across thirty-eight AI initiatives aimed at enhancing patient care and expediting diagnosis. This concerted effort underscores the region's commitment to leveraging AI for improving healthcare outcomes. Countries such as Germany, the UK, France, Spain, Ireland, Switzerland, and Belgium are pivotal contributors, bolstering the region's formidable position in the AI in healthcare market.

The Asia Pacific region is forecasted to experience the highest growth rate in the AI in healthcare market during the forecast period. One significant driver of this growth is the escalating prevalence of cancer in Asia Pacific countries. According to a report by the National Library of Medicine, the Asia-Pacific region is projected to account for half of all cancer cases and 58% of cancer-related deaths by 2023. With nearly 60% of the global population residing in this region, the burden of cancer is substantial, necessitating advanced healthcare solutions.

Furthermore, government investments in smart hospitals and healthcare infrastructure, alongside the burgeoning patient volume, are propelling AI adoption. The increasing penetration of smartphones and internet connectivity further facilitates the adoption of AI in healthcare. Technological advancements addressing data security and privacy concerns are anticipated to accelerate AI adoption, positioning the Asia Pacific region as a pivotal growth driver in the global AI in healthcare market. 

South America and the Middle East & Africa are emerging as significant markets with considerable growth potential in the AI in healthcare market. These regions are progressively embracing AI technologies to enhance healthcare services and tackle challenges such as extensive rural populations and constrained healthcare resources. In South America, there is a growing emphasis on the development of Remote Patient Monitoring (RPM) and telehealth solutions.

How is the Competition Scenario in the AI in Healthcare Market?

AI in Healthcare Market: Competition Scenario and Outlook

In the fiercely competitive landscape of the AI in Healthcare Market, companies are employing innovative strategies like product development, partnerships, and mergers & acquisitions to meet the rising demand for early disease detection, precise diagnostics, cost containment, addressing healthcare provider shortages, and delivering value-based care. This market is marked by a multitude of key players, contributing to its high fragmentation.

Partnerships and collaborations play a pivotal role in the expansion of the AI in Healthcare Market. Companies are teaming up to leverage their expertise and resources in developing groundbreaking solutions. For instance, partnerships between technology giants such as Google Inc., Microsoft, IBM, and healthcare providers have yielded AI-powered tools for medical imaging analysis, clinical decision support, and personalized medicine. Similarly, collaborations between pharmaceutical firms and AI startups aim to streamline drug discovery and development processes, leading to the introduction of novel treatments and therapies.

Mergers and acquisitions are also reshaping the competitive landscape of the AI in Healthcare Market. In recent years, companies such as IBM, Intel Corporation, and Siemens Healthineers AG have acquired AI startups specializing in healthcare analytics, medical imaging, and clinical research.

Recent developments in the AI in Healthcare Market encompass the introduction of AI-powered virtual assistants for patient engagement and remote monitoring, the utilization of natural language processing for electronic health record (EHR) management, and the integration of AI algorithms into wearable devices for continuous health monitoring.

Some of the leading companies operating in the global AI in Healthcare Market include Amazon Inc., Atomwise, Babylon Health, Biobeat, CloudMedx, COTA, Enlitic, FDNA INC., GE HealthCare Technologies Inc., General Vision Inc., Ginger, Google Inc., IBM, Intel Corporation, IQVIA, Itrex Group, Johnson & Johnson Services Inc., Koninklijke Philips N.V., Lunit Inc., MDLIVE, Medidata, Medtronic, Merative, Merck, Micron Technology, Microsoft, NVIDIA Corporation, Oncora Medical, Oracle, Qure.ai, Qventus, Recursion, Siemens Healthineers AG, Sirona Medical Inc., Stryker, Sweetch, Tempus, and Virgin Pulse, among others.

Some Recent Developments in AI in Healthcare Industry

  • In March 2024, NVIDIA unveiled its latest innovation, Generative AI Microservices, aimed at revolutionizing medical technology (MedTech), drug discovery, and digital health. This cutting-edge approach seeks to reshape healthcare technology by harnessing advanced AI capabilities.

  • In March 2024, Johnson & Johnson unveiled a partnership with Nvidia aimed at integrating cutting-edge AI devices and platforms from pre-operation to post-operation stages. These advanced artificial intelligence devices streamline vital information for surgeons, offering comprehensive support throughout medical procedures.

  • In March 2024, GE HealthCare joined forces with Nvidia in March 2024 to bring AI to ultrasound technology. Leveraging Nvidia's technology, GE HealthCare developed an AI-powered research model named SonoSAMTrack. This model combines a foundational AI framework for segmenting objects in ultrasound images, allowing for precise identification of anatomies, lesions, and other critical areas.

  • In March 2024, Microsoft and NVIDIA collaborated to enhance AI innovation and accelerate computing capabilities. This partnership capitalizes on Microsoft Azure's global scale and advanced computing, combined with NVIDIA’s DGX Cloud and Clara suite, to drive innovation and elevate patient care.

  • In November 2023, Koninklijke Philips N.V. partnered with Vestre Viken Health Trust in Norway, deploying its AI Manager platform to enhance radiology workflows. The AI-enabled bone fracture application streamlined diagnoses, allowing radiologists to focus on complex cases. This initiative, spanning 30 hospitals and serving around 3.8 million people, marked Philips’ most extensive AI deployment in Europe, contributing to improved patient care and accelerated diagnostic processes.

  • In October 2023, Microsoft unveiled new data and AI solutions, Microsoft Cloud, at the HLTH 2023 conference, empowering healthcare organizations to unlock insights and enhance patient and clinician experiences. The industry-specific data solutions in Microsoft Fabric provide a unified analytics platform, simplifying the integration of diverse health data sources and enabling secure access to valuable insights.

  • In September 2023, Merck KGaA forged a strategic collaboration with Exscientia and BenevolentAI to drive accelerated drug discovery through the integration of high-end AI platforms.

  • In January 2023, Terumo and Siemens Healthineers India collaborated to strengthen heart care in India, expanding access to superior cardiac care for more people.

  • In November 2022, Nuance Communications and NVIDIA integrated AI models in medical imaging directly into the clinical context. This strategic partnership facilitates the deployment of diagnostic imaging AI models trained in existing large-scale clinical applications. 

  • In August 2021, Philips introduced two HealthSuite solutions designed to seamlessly integrate informatics with health systems, scalable to meet specific requirements.

  • In May 2021, IBM introduced nanometer chip technologies, leveraging artificial intelligence and cloud technologies to enhance chip efficiency and performance.

  • In April 2021, Nvidia introduced A10 and A30 GPUs for enterprise servers, alongside Morpheus, enabling cybersecurity developers to detect cyber breaches using AI technology.

  • In April 2021, IBM unveiled advanced storage systems simplifying access to data and its availability for artificial intelligence and cloud applications.

  • In September 2019, GE Healthcare partnered with five software developers in China to collaborate on the development of the Edison AI platform.

 

FAQs

What is the Global AI in Healthcare Market Growth?

The global AI in Healthcare Market is expected to grow at a compound annual growth rate (CAGR) of around 35% from 2024 to 2030.

What are the Factors Driving the AI in Healthcare Market?

Some of the key factors driving the AI in Healthcare Market growth include the exponential growth of digital health-related data from patients, the growing need for personalized medicine, increasing pressure to enhance operational efficiency within healthcare systems, a shortage of healthcare professionals, the necessity to reduce overall healthcare costs, the expanding global elderly population, shifting lifestyles, and the prevalence of chronic diseases.

How Big is the Global AI in Healthcare Market?

The global AI in Healthcare Market size in terms of revenue was estimated to be USD 21 Billion in 2023.

Which Segment Accounted for the Largest Share of Global AI in Healthcare Market?

In terms of component, the software solutions segment held the dominant share in the AI in Healthcare Market, accounting for around 40% in 2023. This is primarily attributed to the widespread adoption of AI-powered software solutions across diverse stakeholders within the healthcare ecosystem, including healthcare providers, payers, and patients.

Who are the Key Players in the AI in Healthcare Market?

Some of the key players operating in the AI in Healthcare Market include Amazon Inc., Atomwise, Babylon Health, Biobeat, CloudMedx, COTA, Enlitic, FDNA INC., GE HealthCare Technologies Inc., General Vision Inc., Ginger, Google Inc., IBM, Intel Corporation, IQVIA, Itrex Group, Johnson & Johnson Services Inc., Koninklijke Philips N.V., Lunit Inc., MDLIVE, Medidata, Medtronic, Merative, Merck, Micron Technology, Microsoft, NVIDIA Corporation, Oncora Medical, Oracle, Qure.ai, Qventus, Recursion, Siemens Healthineers AG, Sirona Medical Inc., Stryker, Sweetch, Tempus, Virgin Pulse, and others.

What are Key Applications and Use-Cases of the AI in Healthcare Market?

Some of the key applications and use-cases identified in the AI in Healthcare Market include medical diagnosis, drug discovery, patient experience enhancement, healthcare data management, robotic surgery, healthcare administrative workflow optimization, virtual nursing assistants, dosage error reduction, and fraud prevention, among others.

How will I Receive this Report and Data?

Based on your selected License Type, you will receive the report in various downloadable formats, including PDF, PPT, Word, and Data Pack (Spreadsheet) files.

Key Insights Delivered

Historical and Current Market Assessment

Market Outlook, Forecasts, and Growth Rates

Segments and Regional Forecasts for Market Intelligence

Competition Strategy and Company Market Shares Analysis

Customer Analysis and Purchase Pattern Analysis

Key Growth and Driving Factors

Key Opportunities in the Market

Products and Services Innovation Listing

Key Technological Trends & Timeline

Regulatory and Policy Analysis

Why Choose Us?

Specialized Industry Focus for In-Depth Insights

Robust Research Methodology Validated by Industry Experts and Survey Panelists

Quality and Accuracy Assurance

Availability in Different Formats

Free Post-Sales Uninterrupted Service

Permission to Print

Free Report Walkthrough / Presentation by Dedicated Account Manager

Free 20% or 40 Hours of Customization

Avail Special Discount on Your Next Purchase

Subscription Packages Available

Vertex Market Research

Artificial Intelligence (AI) in Healthcare Market Size, Share Forecast Report 2024 – 2032

safe and secure SSL encrypted

Easy Payment Options Available

choose licence type

Customization Options

Specific Region/Country Level Market Assessment

Additional Segmentations of Consumers/ Products/ Services/ Applications

Cross-Segmentation of Demand and Supply Side Segments

Customized Market Forecasting and Trend Analysis

Customized Competitive Landscape and Company Profiles Tailored to Your Marketplace and Interests

Additional Survey Panels for Custom Insights

Other Specific Customization Requirements

clients

Vertex Market Research
Vertex Market Research
Vertex Market Research
Vertex Market Research
Vertex Market Research
Vertex Market Research
Vertex Market Research
Vertex Market Research
Vertex Market Research
Vertex Market Research
Vertex Market Research
Vertex Market Research